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Analysis of a general theorem concerning
two non-commuting Hermitian matrices:

Quantum mechanical implications for ground and excited
states

Ramon Carbó-Dorcaa,∗ and Patrick Bultinckb
a Institute of Computational Chemistry, University of Girona, Campus Montilivi, 17071 Girona,

Catalonia, Spain
E-mail: quantum@iqc.udg.es

b Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S-3), B-9000 Gent,
Belgium

Received 24 February 2003

A general theorem concerning the spectral relationship of two non-commuting Hermitian
matrices is demonstrated. Discussion and analysis of such finding leads to consider its tight
connection with respect of the Hohenberg–Kohn theorem (HKT), cornerstone of DFT theory.
The present analysis shows that not only HKT can be considered a particular case of the
proposed theorem, but also the validity of the studied spectral relationship can be extended
from quantum mechanical ground state to excited states as well.
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1. Theorem 1: matrix difference relationship for non-commuting Hermitian
matrices

Hermitian matrices can be considered as representations of Hermitian operators
with respect to some chosen basis set, therefore any theorem concerning such kind of
matrix structures has an immediate quantum mechanical connotation and, hence, a plau-
sible quantum chemical application. Here, more precisely, as a relationship concerning
a pair of such matrices is studied, a decisive connection with density functional theory
(DFT) [1] can be easily found, as will be further discussed.

The following theorem dealing with the lowest eigenvalues of two Hermitian non-
commuting matrices can be proposed.

Theorem 1. Given two non-commuting Hermitian matricesA,B ∈ M(N×N)(C) and
known their lowest eigenvalues and different eigenvectors{α0; x0} and{β0; y0}. Then,
the matrix differenceD = A− B fulfils the inequalityx+0 Dx0 < y+0 Dy0.
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Proof. One can write by hypothesis:

Ax0 = α0x0 and By0 = β0y0 
⇒ α0 = x+0 Ax0 and β0 = y+0 By0, (1)

as the eigenvectors can be considered normalized:

x+0 x0 = y+0 y0 = 1. (2)

It is also fulfilled:

α0 = min
I
{αI } and β0 = min

I
{βI }. (3)

Then, the variational principle indicates that, when setting up the following expressions,
which can be taken as approximations to both exact eigenvalues, the present inequalities
will also certainly hold:

αa0 = y+0 Ay0 > α0 and βa0 = x+0 Bx0 > β0. (4)

The variational theorem also provides the possibility of havingαa0 = α0. Such a
situation is, however, not present taking into account the fact that the theorem explicitly
requires there is no common eigenvector. As a result one can also derive:

αa0 − α0= y+0 Ay0− x+0 Ax0 > 0,

βa0 − β0= x+0 Bx0− y+0 By0 > 0.
(5)

Summing up both above inequalities, it is finally obtained:
(
αa0 + βa0

)− (α0+ β0) = x+0 (B− A)x0+ y+0 (A− B)y0 > 0 (6)

which readily is transformed into

y+0 (A− B)y0− x+0 (A− B)x0 > 0. (7)

Thus, callingD = A− B, one can finally write:

y+0 Dy0− x+0 Dx0 > 0 
⇒ x+0 Dx0 < y+0 Dy0. (8)

�

1.1. Discussion of theorem 1 and its relation to DFT

Several remarks shall be put forward and discussed in reference to the above theo-
rem 1 as follows.

Remark 1. In case of dealing with two matrices with common lowest eigenvectors or
with commutative matrices, then one will have:

x+0 Dx0 = y+0 Dy0. (9)
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Remark 2. A sign reversal in the definition of the difference matrix will change the re-
lationship accordingly. That is, wheneverD = B− A, then

x+0 Dx0 > y+0 Dy0. (10)

Remark 3. The difference matrix,D, being Hermitian too, can be diagonalized. That is,
there will exist unitary matrix,U, which will transform the difference matrix,D, into a
diagonal one,, defined over the real field:

∃U: U+U = UU+ = I 
⇒ U+DU =  and∀I : I ∈ R. (11)

Then, the inequality associated to the theorem 1 can be expressed by means of the equiv-
alent form

p+0p0 < q+0q0, (12)

just using the fact that the eigenvector transformations

p0 = Ux0 and q0 = Uy0 (13)

being unitary are norm conserving and that, furthermore, the difference matrix can be
substituted by its spectral decomposition:

D = UU+. (14)

Remark 4. The new diagonal form of the theorem 1, as set in equation (12), can
be considered as a simple change of coordinates, in this case coinciding with some
N-dimensional rotation, performed on both matricesA andB, by means of the unitary
transformationU. However, the new expressions can be easily transformed, because of
the diagonal structure of the actual matrix, as:

p+0p0=∑
I

II |p0;I |2 =∑
I

IIπ0;I = 〈|π0〉,
q+0q0=∑

I

II |q0;I |2 =∑
I

IIχ0;I = 〈|χ0〉.
(15)

In the final equations above, the diagonal matrix has been transformed into a real vector
|〉, and two vectors possessing positive definite real elements are readily defined:|π0〉
and|χ0〉.

Such new vectors are straightforwardly generated from the transformed vectors,
that is [2]1: R(p0 → |π0〉) and R(q0 → |χ0〉). Besides, both vectors by con-

1 In order to have more information on the symbols employed here, apart to peruse reference [2], it can be
said that the following conventions have been used:

(1) Generating vector: R(p→ |π〉) ≡ {|π〉I = |pI |2}.
(2) Vector convex property: K(|π〉) ≡ {∀I : |π〉I ∈ R+ and〈|π〉〉 = 1}.
(3) Vector elements summation: 〈|π〉〉 =∑I |π〉I .
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struction are fulfilling convex conditions, that is,K(|π0〉) andK(|χ0〉), and therefore,
〈|π0〉〉 = 〈|χ0〉〉 = 1. Vectors|π0〉 and |χ0〉, as previously defined, can be considered
as elements of avector semispace and as normalized in theMinkowski norm sense [3].
Vector semispaces are made as usual vector spaces, but are restrictedly defined over the
positive definite real fieldR+ only. The main axiomatic characteristic of semispaces con-
sists of the vector addition is constructed with an Abeliansemigroup structure (see [3] for
recent studies), instead of the usual Abelian additive group associated to vector spaces.
Semigroups are groups without reciprocal elements. Additive semigroups like the ones
employed in order to construct semispaces, lack of negative elements and, thus, differ-
ences, negative vectors and scalars are not present.

Thus, theorem 1 can be now stated by means of the alternative inequality:

〈|π0〉 < 〈|χ0〉. (16)

Remark 5. Theorem 1, as shown in equation (16) above, can be also interpreted in terms
of a relationship involving two expectation values, associated to the scalar products ap-
pearing in the inequality. Both inequality expectation values are computed by means of
a given set of real values, represented by the real eigenvalues of the difference matrix in
vector form: |〉, and a pair of discrete probability density vectors, made, in turn, with
the transformed eigenvector elements:{|π0〉; |χ0〉}. However, due to the simple form of
the expectation values appearing in equation (16), the theorem 1 can be also expressed
at this level as

〈|π0〉 − 〈|χ0〉 < 0 
⇒ 〈|δ0〉 < 0, (17)

with the new vector,|δ0〉, simply represented by the difference between the implied
discrete probability distributions:

|δ0〉 = |π0〉 − |χ0〉. (18)

Remark 6. The final form of theorem 1, as represented in equation (17) above, coin-
cides with a new analysis of theHohenberg–Kohn theorem (HKT) [5], as was described
recently by Sen et al. [6]. Within HKT and using such an alternative formalism, the
difference matrix,D, can be seen, according to the usual DFT lore [1,5], as a non-local
potential representation in some chosen basis set, if matricesA andB are considered, in
addition, as Hamiltonian representations of systems with the same number of electrons.

However, as in the derivation of all the results presented here, there have been no
assumptions other than choosing the pair of involved matrices as Hermitian and non-
commutative, then theorem 1 and all of its formal aspects and various levels, as deduced
here, seems to be a general property of Hermitian non-commutative operators, and there-
fore HKT shall be considered as a corollary of such a general theorem.

The first Hohenberg–Kohn theorem demonstrates that the electron density of a
system uniquely determines the Hamiltonian, and as such all properties of the system.
Consider the case of two external potentials differing by more than a mere constant.
This will give rise to different Hamilton operators, denotedĤa andĤb. As in theorem 1
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described above, it is assumed that the lowest eigenvectors of both systems are different,
that is the ground state is non-degenerate. Since the electron density is obtained through
wave functions quadrature, it is not out of question to suppose that the same electron
density may be obtained for both systems, that is:

Ĥa → �a → ρa(r) = ρb(r)← �b ← Ĥb. (19)

Now one can use�a as a trial function for̂Hb and vice versa. Using the above
mentioned quadrature relation, one can write for systems with Hamiltoniansa andb [6]:

Ea,a =
〈
Ĥa
∣∣ρa
〉
, (20)

Eb,b =
〈
Ĥb
∣∣ρb〉. (21)

This notation implies that the energy for systema has been obtained using the
variationally optimized wave functions, giving the electron densityρa. One can now
use the wave function�b as a trial function on the system with Hamilton operatorĤa.
Using the non-degenerate assumption set out in the beginning, the variational principle
becomes:

Ea,b =
〈
Ĥa
∣∣ρb〉 > 〈

Ĥa
∣∣ρa 〉 = Ea,a. (22)

A similar equation holds for systemb, where�a is used:

Eb,a =
〈
Ĥb
∣∣ρa〉 > 〈

Ĥb
∣∣ρb〉 = Eb,b. (23)

If we now add these inequalities, and re-arrange terms, we obtain:
〈
Ĥb − Ĥa

∣∣ρa
〉
>
〈
Ĥb − Ĥa

∣∣ρb
〉
. (24)

It is immediately clear now that these equations are completely similar to the situation
encountered in theorem 1. The operatorD in theorem 1 is the difference between both
Hamilton operators, being the difference located in external potentials. In other words,
from the general theorem concerning Hermitian operators, the same result as above can
be deduced. Coming back to the starting point and accepting that both systems, differing
in external potential have the same electron density, that is,

ρa = ρb, (25)

an impossible inequality
〈
Ĥb − Ĥa

∣∣ρa
〉
>
〈
Ĥb − Ĥa

∣∣ρa
〉

(26)

is found which proves that the starting supposition was not suitable.
Theorem 1 has to be regarded as a consequence of the Hermitian nature of the two

involved matrices and of the variational principle as well.
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1.2. Extension of theorem 1 to the entire matrix spectrum

An important question can be studied now. It concerns the possibility to extend
theorem 1 to the realm of eigenvectors, associated to eigenvalues situated at higher val-
ues in the spectra of both matrices, provided that no common eigenvectors are present
in the implied characteristic basis sets. The result will obviously depend on the behav-
iour of the approximate eigenvalues, which shall be computed as in equation (4), but for
spectral elements other than the zeroth ones, that is:

∀I > 0: αaI = y+I AyI 〈?: A〉αI and βaI = x+I BxI 〈?: B〉βI , (27)

where in equation (27) above, the symbol〈?: [index]〉 is used to indicate that there is no
possibility to know for each equation, in general, the relative magnitude of the approxi-
mate eigenvalues with respect to the exact ones. But there are not so many possibilities
as to impede to look at them separately.

First, in case that both symbols can be substituted by the same as in the zeroth case,
then obviously the theorem will hold equally. The same trivial situation will occur when
both can be written in a reversed manner than the zeroth case, as:〈?: A〉 ≡ 〈?: B〉 ≡ <,
providing with a sign reversal and a result as the one given in the remark 2. The case
where〈?: A〉 ≡> and〈?: B〉 ≡< and the symmetric one,〈?: A〉 ≡< and〈?: B〉 ≡>,
can be obviously studied in the same way. Due to this, only the first non-trivial case will
be put forward.

Next, in order to do this analysis for the〈?: A〉 ≡> and〈?: B〉 ≡< case, one can
suppose that

∃I > 0: αaI = y+I AyI > αI and βaI = x+I BxI < βI . (28)

Thus the following equations are obtained:

αaI − αI = y+I AyI − x+I AxI > 0,

βI − βaI = y+I ByI − x+I BxI > 0, (29)

which summed up as performed in theorem 1, produce:
(
αaI + βI

)− (αI + βaI
) = y+I (A+ B)yI − x+I (A+ B)xI > 0. (30)

Accordingly, it can be written as follows:

x+I (A+ B)xI < y+I (A+ B)yI . (31)

So, in this crossed relationship case the sum,S = A+B of the implied matrices has the
leading role, or in the same way as in theorem 1, it can be written as follows:

x+I SxI < y+I SyI . (32)

Thus, the analysis of theorem 1 based on the difference matrixD, can be performed
here, exactly in the same way for the matrix sumS. Therefore, this shows that even for
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excited states, there should be present a HKT form available, which could be written
now as

〈�|πI 〉 < 〈�|χI 〉, (33)

provided that within the real vector|�〉 are contained the eigenvalues of the matrix sum.
The transformed initial eigenvectors permit finally, employing the same arguments as
those used before, to write:

〈�|δI 〉 < 0, (34)

in case that the new vector|δI 〉, corresponds to the difference between the discrete prob-
ability density distributions associated to the originalI th eigenvectors:

|δI 〉 = |πI 〉 − |χI 〉. (35)

This new possible relationship, even for excited states, when the involved operator
representations are taken as quantum chemical Hamiltonian representations may be ob-
served as the final proof of the generality and application power which can be associated
to theorem 1.

As a consequence of the remarks on theorem 1, and of the discussion presented
above, a more general theorem can be settled in order to finish this study in a complete
manner.

Theorem 2. Given two non-commuting Hermitian matricesA,B ∈ M(N×N)(C) and
knowing their eigenvalues and different eigenvectors{αI ; xI } and {βI ; yI }. Then, the
inequality x+I ZxI < y+I ZyI , will be fulfilled in any case, with the matrixZ being the
differenceD = A− B, or the sumS = A+ B.

Theorem 2 has been already discussed for practically all of the possible cases, so
it will be proposed without proof.

2. Conclusions

The present paper theorems, as far as the authors know, seem to have been unno-
ticed in the specialised literature (see, for example, [7]). Theorem 1 is just a particular
case of theorem 2, but the present work has been presented in this way in order to stress
the connection of the present study with HKT. The immediate and practical conclusion
concerning quantum chemistry, and which can be obtained from the above discussed
properties for any pair of non-commuting Hermitian matrices, can be easily resumed
by stressing the fact that theorem 2 proves there exists a possible extension of DFT to
excited states as well. However, the theorem possesses a wide applicability encompass-
ing Hermitian non-commuting operators and their representations, thus the described
property thru the theorems holds not only for quantum systems energy operators, but for
other kinds of quantum mechanical observables, and for metric matrices as well. The
presented theorems are demonstrated assuming the leading role of the non-commuting
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matrices set, then, necessarily, within the quantum mechanical theoretical structure, both
have to be related with such a basic quantum mechanical idea as Heisenberg uncertainty
principle.
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